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1. Discrete Random Variables. Suppose that we are interested in the number of cups of coffee drank by a
(randomly selected) student at UCLA. This quantity can be represented as a random variable Y with
probability mass function:

pY (a) =



1
4 if a ∈ {0, 1, 2}
1
8 if a = 3
3
32 if a = 4

c if a = 5

0 otherwise

,

where c is an unknown constant.

(a) Explain why the number of cups of coffee drank in a day by a randomly selected student at UCLA
is a random variable.

Answer: Not everyone at UCLA drinks the same number of cups of coffee. Depending on which
UCLA student we select the answer to this question will vary.

(b) What is the relevant outcome space of the random variable Y ?

Answer: We can see from the pmf that Y can only take on one of 6 values, {0, 1, 2, 3, 4, 5}. So
OY = {1, 2, 3, 4, 5}.

(c) Explain what the distribution of this random variable represents. In other words distribution of
Y assigns a probability to any subset of the outcome space. How do we interpret this probability?

Answer: We can interpret PY (A) as the proportion of UCLA students whose daily coffee con-
sumption lies in the set A. For example, PY ({0, 1}) represents the share of UCLA students that
drink either zero or one cup of coffee a day.

(d) Solve for c. (Hint: Recall that PY (OY ) = 1 so that
∑
a∈OY pY (a) must equal one).

Answer: Because PY (OY ) = 1 and PY (
⋃n
i=1Ai) =

∑n
i=1 PY (Ai) if all the A1, . . . , An are pairwise

disjoint we can decompose

1 = PY (OY ) = PY (∪a∈OY {a})

=
∑
a∈OY

PY ({a})

=
∑

a∈{0,1,2,3,4,5}

pY (a)

=
1

4
+

1

4
+

1

4
+

1

8
+

3

32
+ c

=⇒ c =
1

32

1
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(e) What is the probability that a randomly selected student at UCLA drinks at least 3 cups of coffee
a day, PY (Y ≥ 3)?

Answer: Again using the property that PY (
⋃n
i=1Ai) for pairwise disjoint sets A1, A2, . . . , An

PY (Y ≥ 3) = PY ({3, 4, 5}) =
∑

a∈{3,4,5}

PY ({a}) = pY (3)︸ ︷︷ ︸
1/8

+ pY (4)︸ ︷︷ ︸
3/32

+ pY (5)︸ ︷︷ ︸
1/32

=
1

4

(f) What is the expected number of cups of coffee drank per day for a randomly selected student at
UCLA?

Answer: Recall the formula for expected value, E[Y ] =
∑
a∈OY a · pY (a).

E[Y ] =
∑

a∈{0,1,2,3,4,5}

a · pY (a) = 0 · 1

4
+ 1 · 1

4
+ 2 · 1

4
+ 3 · 1

8
+ 4 · 3

32
+ 5 · 1

32

=
8

32
+

16

32
+

12

32
+

12

32
+

5

32

=
53

32
≈ 1.656

2. Continuous Random Variables. Suppose that we are interested in the income of a randomly selected
Angeleno. The distribution of incomes (in tens of thousands of dollars) for residents of Los Angeles
can be described as a random variable, X, with the following pdf.

fX(a) =

{
0.11− ca if 0 ≤ a ≤ 10

0 otherwise
,

where c is an unknown constant.

(a) What is the outcome space of X, OX?

Answer: We can see that pdf is only non-zero on the interval [0, 10] so OX = [0, 10]. Strictly
speaking, we could define the outcome space to be any set that contains [0, 10], it doesn’t violate
any assumption, so other answers may be accepted.

(b) Using the relationship

PX(l ≤ X ≤ m) =

∫ m

l

fX(a) da,

explain why the pdf must always be weakly positive, fX(a) ≥ 0, for any a ∈ R.

Answer: Suppose that the pdf fX(a) was strictly negative on some interval [l,m], (fX(a) < 0 for
l ≤ a ≤ m). Then, using the relationship between probabilities and the pdf, we would find that
PX(l ≤ X ≤ m) < 0, which violates the assumption that 0 ≤ PX(A) ≤ 1 for any subset A.

(c) Because PX(OX) = 1 we must have that
∫ 10

0
fX(a) da = 1. Using this fact, solve for c.

Answer: The pdf must integrate to one so

1 =

∫ 10

0

0.11− ca da = 0.11 · 10− ca
2

2

∣∣∣∣10
0

= 1.1− 50c =⇒ c = 0.002
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(d) What is the expected value of X, E[X]?

Answer: Recall that for a continuous random variable E[X] =
∫
OX a · fX(a) da. Using this

E[X] =

∫ 10

0

a(0.11− 0.002a) da =

∫ 10

0

0.11a− 0.002a2 da

= 0.11
a2

2

∣∣∣∣10
0

− 0.002
a3

3

∣∣∣∣10
0

= 0.11 · 50− 0.002
1000

3
≈ 4.8333

(e) What is the variance of X, Var(X)?

Answer: Recall that Var(X) = E[X2] − (E[X])2. For a continuous random variable E[X2] =∫
OX a

2 · fX(a) da:

E[X2] =

∫ 10

0

a2(0.11− 0.002a) da =

∫ 10

0

0.11 · a2 − 0.002a3 da

= 0.11
a3

3

∣∣∣∣10
0

− 0.002
a4

4

∣∣∣∣10
0

= 0.11
1000

3
− 5 ≈ 31.6666

Using this along with the solution to part (d) we can compute

Var(X) = E[X2]− (E[X])2 ≈ 8.3056.

3. Variance and Covariance. Let Y be a random variable representing income (in tens of thousands of
dollars) and X be a random variable representing years of education. Suppose that the marginal
distribution of X is described by its probability mass function

pX(x) =


0.05 if x ∈ {1, 2, . . . , 12}
0.09 if x ∈ {13, 14, 15, 16}
0.04 if x ∈ {17}
0 otherwise

.

The marginal distribution of Y is described by its probability density function

fY (y) =

{
0.1 if 0 ≤ y ≤ 10

0 otherwise
.

(a) What is the expectation of Y , E[Y ]? What is its variance, Var(Y )?

Answer: Using the formulas from above we can calculate

E[Y ] =

∫ 10

0

0.1a da = 5 and Var(Y ) =

∫ 10

0

(a− 5)2 · 0.1 da = 100/12

(b) What is the expectation of X, E[X]? What is its variance, Var(X)?
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Answer: Using the formulas from above we calculate:

E[X] = 0.05(1 + 2 + · · ·+ 12) + 0.09(13 + 14 + 15 + 16) + 0.004 · 17 = 9.8

E[X2] = 0.05(12 + 22 + · · ·+ 122) + 0.09(132 + 142 + 152 + 162) + 0.004 · 172 = 120.2

=⇒ Var(X) = E[X2]− (E[X])2 = 24.16

(c) Using E[Y X] = 60 compute the covariance between Y and X, Cov(X,Y ).

Answer: From lecture we showed that Cov(X,Y ) = E[XY ] − E[X]E[Y ]. From part (a) we have
that E[Y ] = 5 and from part (b) we have that E[X] = 9.8. Using this we find that

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = 60− 9.8 · 5 = 11.

(d) Calculate the correlation coefficient between X and Y .

ρY X =
Cov(X,Y )

σXσY
.

Answer: Using the above, we find that σX =
√

24.16 and σY =
√

100/12. Since Cov(X,Y ) = 11
we can calculate

ρXY =
Cov(X,Y )

σXσY
=

11√
24.16

√
100/12

≈ 0.775.

(e) What does this covariance tell us about the relationship between education levels and income? Is
there a positive or negative association?

Answer: Since the covariance is positive we can see that there is a positive association between
education levels and income. In general, people with higher education levels may earn more than
people with lower education levels.

(f) Should we interpret this result as a causal relationship between education and income? What are
some reasons we may want to refrain from this interpretation?

Answer: We cannot necessarily interpret this as a causal relationship, it is purely associative.
Some hidden factors (often referred to as confounding variables) that may affect both education
and income may be technical skill and parental income level. Students that have high levels of
education may have a high ability at some skill and so may have obtained high earnings otherwise.
People who attend college also generally have parents that are better off than there non-college
attending counterparts. This could allow them to get referrals to high paying jobs more easily
even in the absence of a college degree.

(g) (Challenge) A common inequality used in econometrics is the Cauchy-Schwarz inequality. It
states that, for any random variables X and Y , and any functions g(·) and h(·),∣∣E[g(X)h(Y )]

∣∣ ≤√E[g2(X)]
√
E[h2(Y )].

Use this inequality to show why the correlation coefficient is bounded between negative one and
one, −1 ≤ ρXY ≤ 1. (Hint : Try g(x) = x− µX and h(y) = y − µY ).

Answer: Use g(x) = x−µX and h(x) = y−µY so that we can write Cov(X,Y ) = E[(X−µX)(Y −
µX)] = E[g(X)h(Y )]. Then applying Cauchy-Schwarz∣∣Cov(X,Y )

∣∣ ≤√E[g2(X)]
√
E[h2(X) =

√
E[(X − µX)2]︸ ︷︷ ︸

σX

√
E[(Y − µY )2]︸ ︷︷ ︸

σY

.

Since |Cov(X,Y )| ≤ σXσY , |ρXY | ≤ 1.
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Introduction to Single Linear Regression

1. Useful Equalities. Recall that in deriving the form of β̂1 we used the following equalities

1

n

n∑
i=1

(Yi − Ȳ )(Xi − X̄) =
1

n

n∑
i=1

YiXi − Ȳ X̄ and
1

n

n∑
i=1

(Xi − X̄)2 =
1

n

n∑
i=1

X2
i − (X̄)2.

Show either one of these equalities (only have to show one or the other).

Answer: Showing these in order:

1

n

n∑
i=1

(Yi − Ȳ )(Xi − X̄) =
1

n

n∑
i=1

YiXi − X̄
1

n

n∑
i=1

Yi − Ȳ
1

n

n∑
i=1

Xi + Ȳ X̄

=
1

n

n∑
i=1

YiXi − X̄Ȳ − Ȳ X̄ + Ȳ X̄

=
1

n

n∑
i=1

YiXi − X̄Ȳ

The second one follows basically the same steps:

1

n

n∑
i=1

(Xi − X̄)2 =
1

n

n∑
i=1

(
X2
i − 2XiX̄ + (X̄)2

)
=

1

n

n∑
i=1

X2
i − 2X̄

1

n

n∑
i=1

Xi + (X̄)2

=
1

n

n∑
i=1

X2
i − 2(X̄)2 + (X̄)2

=
1

n

n∑
i=1

X2
i − (X̄)2

2. Assumptions for Inference. Suppose we are interested in the relationship between the size of the average
American’s social circle, X, and whether or not they are unemployed, Y . To investigate this relationship
we want to estimate the following regression equation1

Y = β0 + β1X + ε, E[ε] = E[εX] = 0.

To estimate the regression coefficient parameters we collect a sample of size n, {Yi, Xi}ni=1. Recall

that for valid asymptotic inference on our estimates β̂0 and β̂1 we require the following assumptions:
Random Sampling, Homoskedasticity, and Rank condition.

• Random Sampling: Assume that {Y,Xi} are independently and identically distributed from the

population of interest, (Yi, Xi)
i.i.d∼ (Y,X).

• Homoskedasticity: Assume that Var(ε|X = x) = σ2
ε for all possible values of x.

• Rank Condition: There must be at least two distinct values of X that appear in the population.

(a) Suppose we collect our sample by only randomly surveying people on UCLA campus. Which
assumption would be violated?

Answer: In this case the random sampling assumption would be violated. By only sampling people
at UCLA campus we are not drawing from the population of interest, which is the population

1Recall that this regression specification corresponds to finding the line of best fit parameters β0, β1 = arg minb0,b1 E[(Y −
b0 − b1X)2] and defining ε = Y − β0 − β1X
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of all (adult) Americans. People on UCLA campus are probably not representative of the entire
country.

(b) Suppose we collect our sample and find that everyone appears to have exactly one friend. Which
assumption would be violated? Why is this a problem when computing the line of best fit through
our sample?

Answer: In this condition we are violating the rank condition. We need at least two x values to
make a well defined line, otherwise the slope would be infinite.

(c) Suppose random sampling, homoskedasticity, and the rank condition are all satisfied, but n = 10.
Why might inferences based on the approximation

β̂1 − β1
σ̂β1/
√
n
∼ N(0, 1)

not be valid?

Answer: This approximation is based on the Central Limit Theorem, which only applies when n is
large. For small n the normal distribution may not be a good approximation for the distribution
of β̂1.

3. Hypothesis Testing. Suppose now that we are interested in investigating the relationship between the
size of someone’s social circle, X, and their income (in tens of thousands of dollars), Y . We want to
estimate the following linear regression model

Y = β0 + β1X + ε, E[ε] = E[εX] = 0.

To do so we collect a random sample of size n = 64, {Yi, Xi}64i=1 and find that 1
n

∑n
i=1(Xi− X̄)2 = 100,

1
n

∑n
i=1(Yi − Ȳ )(Xi − X̄) = 225, Ȳ = 5.5, and X̄ = 1.5.

(a) Using this information find and interpret β̂1 and β̂0.

Answer: Recall from lecture

β̂1 =
1
n

∑n
i=1(Yi − Ȳ )(Xi − X̄)
1
n

∑n
i=1(Xi − X̄)2

=⇒ β̂1 =
225

100
= 2.25

β̂0 = Ȳ − β̂1X̄ =⇒ β̂0 = 5.5− 2.25 · 1.5 = 2.125

Interpreting β̂0 in context we can say that we estimate that the average value of income for
someone with no friends to be $21, 250. We interpret β̂1 in context by saying that we estimate
that having an additional friend is associated with a $22, 500 increase in income.

(b) After finding β̂1 and β̂1 describe how you would construct the estimated residuals ε̂i.

Answer: We would construct the estimated residuals ε̂i = Yi − β̂0 − β̂1Xi for each (Yi, Xi) in our
sample.

(c) We find that 1
n

∑n
i=1 ε̂

2
i = 36. Use this and the result that, for n large,

β̂1 − β1
σ̂β1

/
√
n
∼ N(0, 1),

to compute the (approximate) probability that, if the true value was given β1 = 0, we would see

a value of |β̂1| equal to or larger than the one that we observed.

Answer: Under the assumption that β1 = 0, we want to compute Pr(|β̂1| ≥ 2.25). To compute
this see that

Pr(|β̂1| ≥ 2.25) = Pr

∣∣∣∣∣ β̂1 − 0

σ̂β1
/
√
n

∣∣∣∣∣ ≥ 2.25

σ̂β1
/
√
n

 ≈ Pr

(
|Z| ≥ 2.25

σ̂β1
/
√
n

)
.
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What remains is to compute σ̂β1 . Recall from lecture that

σ̂2
β1

=
σ̂2
ε

σ̂2
X

=
36

100
=⇒ σ̂β1/

√
n =

6

10

1

8
= 0.075.

So Pr
(
|Z| ≥ 2.25

σ̂β1/
√
n

)
= Pr

(
|Z| ≥ 30

)
≈ 0.

(d) Use this result to test, at level α = 0.1, the hypotheses

H0 : β1 = 0 vs. H1 : β1 6= 0

Answer: In part (c) we found that the p-value for this test was very close to zero. Since 0 ≤ α = 0.1
we can reject this null hypothesis in favor of the alternative hypothesis and conclude that there
is a relationship between the size of someone’s circle and their income.

(e) Conduct this test in another fashion by constructing the test statistic t∗ and comparing to either
z0.95 = 1.64 or z0.9 = 1.24 (indicate which value you are comparing the test statistic too).

Answer: We can also conduct this test by constructing the test statistic t∗ and comparing its
absolute value to z1−α/2 = z0.95 (since we are running a two-sided test at α = 0.1). The test
statistic is constructed:

t∗ =
β̂1 − 0

σ̂β1
/
√
n

=
2.25

0.6/8
= 30.

Since |t∗| = 30� 1.64 = z0.95 we reject the null hypothesis that there is no relationship between
the size of one’s social circle and income in favor of the alternative hypothesis that there is a
relationship between the two.

(f) Construct a 90% confidence interval for β1. How could we use this to conduct the hypothesis test
in part (d)?

Answer: Recall that a 90% confidence interval for β1 consists of all the values b for which we
would not reject, at level α = 1 − 0.9 = 0.1, the null hypothesis H0 : β1 = b in favor of an
alternative H1 : β1 6= b. We fail to reject this null hypothesis in favor of the two sided alternative

if |(β̂ − b)/σ̂β1
/
√
n| = |t∗| ≤ z1−α/2 = z0.95 =⇒ b ∈ [β̂ − z1−α/2σ̂β1

√
n, β̂ + z1−α/2σ̂β1

/
√
n]. In

part (c) we found that σ̂β1
/
√
n = 0.075 and we know z0.95 = 1.64 so that our 90% confidence

interval for β1 is given:
2.25± 1.64 · 0.075 = [2.127, 2.373].

Since zero is not contained in this interval we can conclude that we would reject the null hypothesis
in part (d).

(g) Suppose that we find we made an error in our calculation and actually 1
n

∑n
i=1(Xi − X̄)2 = 1. If

all other values stayed the same, how would this change the result of the hypothesis test in part
(d)?

Answer: To rerun this test we will need to recompute β̂1 and σ̂β1
. Using the formula

β̂1 =
1
n

∑n
i=1(Yi − Ȳ )(Xi − X̄)
1
n

∑n
i=1(Xi − X̄)2

=⇒ β̂1 =
225

1
= 225.

Now we recompute σ̂β1 via

σ̂2
β1

=
1
n

∑n
i=1 ε̂

2
i

1
n

∑n
i=1(Xi − X̄)2

=⇒ σ̂2
β1

= 36.

The standard error is now given σ̂β1/
√
n = 6/8 = 0.75. Our test statistic can now be computed

t∗ =
225

0.75
= 300.

Clearly, we still reject our null hypothesis.


